Project Database
Spanish Railways Technological Platform

Monographic

RETOS INVESTIGACIÓN: Proyectos I+D+i
Spanish National R&D and Innovation Programme

Rail Project Analysis
2013-2017 Calls
Driven by the Spanish Ministry of Science, Innovation and Universities

Analysis of awarded RAIL projects

The information has been provided on a voluntary base by project participants, answering a call for collaboration issued to the members of the PTFE

16 factsheets received, corresponding to 13 projects. 6 of them are joint projects; 7 of them are individual projects

Continuously updated document

More info: [click here](#)
Projects analysed

16 factsheets received, corresponding to 13 projects. 6 of them are joint projects; 7 of them are individual projects. The distribution per call for proposals is the following one:

Data analysed:
16 factsheets of RAIL PROJECTS
Retos-investigación: Proyectos I+D+i 2013-2017
Beneficiaries

<table>
<thead>
<tr>
<th>Beneficiary</th>
<th># Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIVERSITAT POLITÈCNICA DE VALÈNCIA</td>
<td>4</td>
</tr>
<tr>
<td>UNIVERSIDAD DE SEVILLA</td>
<td>3</td>
</tr>
<tr>
<td>CENTRO DE ESTUDIOS E INVESTIGACIONES TECNICAS</td>
<td>2</td>
</tr>
<tr>
<td>UNIVERSIDAD DEL PAIS VASCO EUSKAL HERRIKO UNIBERTSITATEA</td>
<td>2</td>
</tr>
<tr>
<td>UNIVERSIDAD POLITECNICA DE MADRID</td>
<td>2</td>
</tr>
<tr>
<td>UNIVERSIDAD CARLOS III DE MADRID</td>
<td>1</td>
</tr>
<tr>
<td>UNIVERSITAT JAUME I DE CASTELLO</td>
<td>1</td>
</tr>
<tr>
<td>UNIVERSITAT POLITECNICA DE CATALUNYA</td>
<td>1</td>
</tr>
</tbody>
</table>

Data analysed:
16 factsheets of RAIL PROJECTS
Retos-investigación: Proyectos I+D+i 2013-2017
2013 CALL

Rail Project factsheets received:

- ImpAc_1
- ImpAc_2
- SAREMSIG_1
- SAREMSIG_2

Data analysed:
16 factsheets of RAIL PROJECTS
Retos-investigación: Proyectos I+D+i 2013-2017
ImpAc_1 - DEVELOPMENT OF NEW TECHNOLOGIES INTENDED TO REDUCE THE ACOUSTIC IMPACT OF RAILWAY TRANSPORTATION IN URBAN ENVIRONMENTS

DESCRIPTION The main objective of this project is to study thoroughly three problems which are the main cause of acoustic impact of rail transport in urban environments: corrugation, squeal noise in small radius curves and the passage of vehicles over railway turnouts.

RESULTS
- Track model - distributed model of support to substitute the common models based on concentrated connections.

KEY FIGURES
Call: 2013
Duration: 3 years
Type: joint project
Area: Mechanical Engineering
Principal Investigator: Asier Alonso-Nere Gil-Negrete
Total budget: € 120,000

BENEFICIARY
Ceit-IK4
Technology Center
ImpAc_2 - Development of new technologies aimed at reducing the acoustic impact of rail transport in urban environments

DESCRIPTION This project addresses the vibro-acoustic impact of rail in urban environments. It focuses on the vibroacoustic emission originated by the vehicle-track dynamic interaction, as it is the most important in the running conditions that occur in these environments. Vibratory phenomena are studied in which the dynamics of the track and the vehicle are coupled. In particular, the broad-spectrum rolling noise and the response to discrete defects (impacts produced in detours, crossings, joints and wheel-flats), as well as the squeal that is generated in curves.

RESULTS Through modeling and experimentation, some contributions have been made that are summarized below: improvement of the interaction models through advanced formulations of the wheelset that consider the flexibility and the inertial effects due to rotation; development of advanced wheel-rail contact models tuned to experimentation; simulation of squeal in curves; and improvement of corrugation models, sound radiation and track dynamics. The latter allow to reduce the associated computational cost and are able to increase the validity until covering the audible frequencies.

KEY FIGURES

Call: 2013
Duration: 4 years
Type: Joint Project
Area: Mechanical Engineering
Principal Investigator: F.D. Denia Guzmán
Total budget: € 90,000
SAREMSIG_1. For a Dependable Railway Operation: Evaluation of the Effect of the Electromagnetic Interferences in Railway Signalling Systems

DESCRIPTION

The impact of electromagnetic disturbances in the railway signalling systems is investigated. This Project requires a holistic approach and a solid experience on various fields, such as railway environment, signalling systems, telecommunications and Electromagnetic Compatibility (EMC). The main goal of this Project is to establish the relationship between the threats caused by electromagnetic interferences and the quality of service (QoS) and/or other KPIs relevant for Railway Control and Signalling Systems (RCSS).

RESULTS

The electromagnetic interferences that are present in the environment of the signalling systems of the European standard ERTMS have been characterized and modelled. To do so, real signals obtained from field data have been processed in both time and frequency domains. Then these models have been converted into QoS-related parameters, assessing the influence of the physical noises with the operation. With these data, the lower layers of the communications and signalling technologies have been characterized. Finally, new testing procedures have been proposed (in the lab/model) in order to guarantee the safety of the railway signalling systems.

KEY FIGURES

- **Call:** TEC2013-47012-C2-1-R
- **Duration:** 2014-2016
- **Type:** joint project
- **Area:** Telecommunications
- **Principal Investigator:** Iñigo Adin
- **Total budget:** 64,400 €

BENEFICIARY

Centro tecnológico Ceit-IK4
SAREMSIG_2. For a Reliable Railway Operation: Evaluation of the effect of Electromagnetic Interferences in Railway Signaling Systems

DESCRIPTION
This research project studies the impact of electromagnetic disturbances on railway signaling systems. It identifies the potential risks in the common operation of equipment. This project has demanded a multidisciplinary approach and a high experience in topics such as the railway environment, signaling systems, telecommunications and electromagnetic compatibility. The main objective of this project is to establish the link between the threats caused by electromagnetic interference and the quality of service (QoS) or key performance indicators (KPI) of a Railway Control and Signaling System (RCSS).

RESULTS
Model and characterization of the impact of electromagnetic interferences on quality of service (QoS) parameters of railway signaling systems. Testing procedures have been defined for safety requirements of railway signaling systems. The lower layers of railway communication technology such as GSM-R have been characterized. The behavior of other RCSS component modules, such as the balise, have also been modeled.

KEY FIGURES
Call: TEC2013-47012-C2-1-R
Type: joint project
Area: Telecommunications
Lead Researcher : Marina Aguado
Total budget: 87,483 €

BENEFICIARY
University of the Basque Country
Universidad del País Vasco
Euskal Herriko Unibertsitatea
2014 CALL

Rail Project factsheets received:

– ESFUCON
– ISIBUR
– WARMED

Data analysed:
16 factsheets of RAIL PROJECTS
Retos-investigación: Proyectos I+D+i 2013-2017
ESFUCON. *Estimation of wheel/rail contact forces in vehicles instrumented with inertial and optic sensors using advances computational models*

DESCRIPTION

This project develops a railway vehicle dynamic model specially adapted for the estimation of wheel/rail contact forces will be developed using multibody system dynamics.

RESULTS

Development of an on-board smart system that combines inertial and optical sensors with a previously calibrated dynamometric wheel for the estimation of wheel-rail contact forces.

KEY FIGURES

- **Call:** 2014
- **Duration:** 4 years
- **Area:** Transport
- **Principal Investigator:** José Luis Escalona Franco
- **Total budget:** 112,530.00 €

CONSORTIUM

University of Seville
ISIBUR. Innovative solutions for the railway induced-vibration isolation of buildings

DESCRIPTION: Development of theoretical models of antivibration solutions based on dynamic vibration absorbers, anti-vibration screens and redesign of segments, and their experimental validation at scale.

RESULTS: It is expected to have an analytical, numerical or hybrid theoretical model of each of the proposed anti-vibration solutions, which allows calculating the efficiency of each of them based on their integration in a broader model that includes the railway infrastructure, type of circulation, land and buildings receivers.

<table>
<thead>
<tr>
<th>KEY FIGURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call: 2014</td>
</tr>
<tr>
<td>Duration: 4 years</td>
</tr>
<tr>
<td>Type: individual project</td>
</tr>
<tr>
<td>Area: Transport</td>
</tr>
<tr>
<td>Principal Investigator: Jordi Romeu</td>
</tr>
<tr>
<td>Total budget: 227 480 €</td>
</tr>
</tbody>
</table>

BENEFICIARY

UNIVERSITAT POLITÈCNICA DE CATALUNYA.
DEPARTAMENTO DE INGENIERÍA MECÂNICA
WARMED. Wheel and Rail Modelling for Enhanced Durability.
Development of models to reduce the wear of wheels and rail tracks

DESCRIPTION
The project addresses wheel and rail wear problems, including wheel profile wear as well as corrugation or rail undulatory wear, paying special attention to the conformal contact areas between wheel and rail in curved track. The study is aimed at obtaining possible solutions for the reduction of these types of wear.

RESULTS: The following JCR Q1 papers have been published so far:

KEY FIGURES
Call: 2014
Duration: 4 years
Type: individual project
Area: Transport
Principal Investig.: Ernesto G Vadillo–Javier Santamaría
Total budget: 85.910 Eur

BENEFICIARY
University of The Basque Country (UPV/EHU)
Bilbao School of Eng. Dep of Mech Eng.
2015 CALL

Rail Project factsheets received:

- EDINPF
- MAQ-STATUS

Data analysed:
16 factsheets of RAIL PROJECTS
Retos-investigación: Proyectos I+D+i 2013-2017
EDINPF. Dynamic assessment of railway bridges; Safety and interoperability of existing, upgraded and new structures.

DESCRIPTION
The main goal of the proposed project is the evaluation and improvement of the dynamic performance of new and/or existing railway bridges, for high speed lines or upgrading of conventional lines with fast passenger traffic. This objective will be achieved through the development of new computational models and improvement of existing models, adjusted and updated through experimental measurements, and their application to the Spanish railway network.

RESULTS
Two experimental tests have been carried out in railway bridges from the Spanish railway network in order to evaluate their dynamic behaviour by measuring their modal properties (Eigen frequencies, modal shapes and damping). From these experimental results, some Finite Element models have been calibrated so as to study the dynamic performance of those bridges when real European trains and trains from European codes pass along them. Moreover, some new features have been added to existing 2D analytic models (software Caldintav) and the procedure to go from 3D models to 2D models have been studied.

KEY FIGURES
- **Call:** 2015
- **Duration:** 3 years
- **Type:** individual project
- **Area:** Civil Engineering
- **Principal Investigator:** José Mª Goicolea
- **Total budget:** 127 050 €

BENEFICIARY
UPM – ETSI Caminos
MAQ-STATUS: DPI2015-69325-C2-1-R-MINECO-FEDER-UE

DESCRIPTION
INTEGRATED MONITORING SYSTEM OF CRITICAL MECHANICAL SETS FOR RAIL TRANSPORT MAINTENANCE IMPROVEMENT

KEY FIGURES
Call: RETOS 2015 (2016-2018)
Duration: 3 YEARS
Type: JOINT PROJECT
Area: MECHANICAL ENGINEERING

Principal Investigator:
PROF. J.C. GARCIA-PRADA
MAQLAB-UC3M

PR-1: JC GARCIA-PRADA / C. CASTEJON
PR-2: G.N. MARICHAL (ULL)

Total budget: 136,800 €
(UC3M 96,800 € + ULL 40,000)

Sponsor (Epo):
RENFE; SKF

BENEFICIARY

UNIVERSIDAD CARLOS III DE MADRID
Grupo de Investigación: MAQLAB

UC3M UNIVERSITY

UC3M UNIVERSITY
2016 CALL

Rail Project factsheets received:

- SolNoisVib
- SoilBrRail
SolNoisVib. Quantification and solutions development for the railway induced noise and vibration problem

DESCRIPTION: This project deals with the development of a methodology for the prediction of railway induced noise and vibration levels. As a result, a series of recommendations and apps for railway lines are being developed both for surface and underground railway traffic.

RESULTS: Development of a numerical model for the simulation of railway induced noise and vibration propagation phenomenon. Analysis of soil structure interaction effects on the vibrational response of railway bridges. Development of a simplified and fast solution for the assessment of vibration levels in constructions built in the vicinity of railway lines http://personal.us.es/pedrogalvin/scoping.en.html. Experimental validation of the numerical results obtained in the different project phases.

KEY FIGURES

Duration: 3 years

Type: Joint Project

Area: Civil Engineer

Principal Investigator: Pedro Galvín Barrera

Total budget: 66.550 €

BENEFICIARY

Universidad de Sevilla
SoilBrRail: Numerical analysis and experimental validation of soil structure interaction effects on the dynamic response of railway bridges

DESCRIPTION: In this research project the effect of soil structure interaction on the dynamic response of railway bridges is analysed using different modelling alternatives such as boundary element – finite element analyses in the time domain. Numerical conclusions are compared to experimental measurements performed on real structures both under ambient vibration and forced vibration, including resonant situations.

RESULTS: Fundamental tendencies on the structural properties and dynamic response with the evolution of the soil properties have been derived for an ensemble of representative bridges, assuming simplified substructure geometries. Experimental campaigns have been performed in order to characterize the soil, identify the bridge dynamic properties and its response under railway traffic both under resonant and not resonant conditions.

DATA

Call: 2016. Plan Estatal 2013-2016 Retos - Proyectos

I+D+i

Duration: 3 años

Type: coordinated project

Area: Construcción

Principal Investigator: M.D. Martínez Rodrigo

Total budget: 42.350 €
2017 CALL

Rail Project factsheets received:

- COMMET
- CurvImpAc
- IntelVía
- DIMALIFE
- OBESDINFER

Data analysed:
16 factsheets of RAIL PROJECTS
Retos-investigación: Proyectos I+D+i 2013-2017
COMMET. Communications with MIMO LTE-A/mmW Transceivers for Advanced Services on High Mobility Transport

DESCRIPTION: The goal of the present project is to address an deal with one of the main limitations of the current broadband connectivity in high mobility proposed by 5G, which in fact is not tailored to transport scenarios with high density of vehicles and high speed. To deal with these topics, a novel integral architecture to manage the connectivity in mobile 5G scenarios is proposed. This architecture is based on a mobile network solution that uses novel Moving Relay Nodes, consisting of transceivers that work simultaneously in the LTE and millimeter bands and with a management of the radio resources through Virtualized and Software Defined Radio Access networks. The proposal also includes the integration and management of communications associated with services related to operations and safety in transport, mainly in the railway environment.

RESULTS.

a) Design and development of dedicated Relays Nodes with LTE / millimetric frequency conversion as part of the integral network architecture.
b) Study of the feasibility of using MU_MIMO techniques in the signals transmitted between the base stations and the Moving Relays Nodes (MRNs) and between these and the user terminals.
c) Simulation and modeling of the propagation channel in the millimeter wave frequencies in railway and metropolitan environments,
d) Service security and monitoring systems play a key role in rail transport environments. New techniques based on passive MIMO radars will be addressed which will allow the establishment of "perimeter" security mechanisms using LTE opportunity signals, and
e) Proposal of a comprehensive architecture for the management of the radio access network (Radio Resource Management) and of the Evolved Packet Core, through Virtualized and Software Defined Access Networks.

KEY FIGURES

- **Call:** 2017
- **Duration:** 3 years
- **Type:** Joint Project
- **Area:** Smart, sustainable and integrated transport.
- **Principal Investigator:** JOSÉ-IGNACIO ALONSO MONTES.
- **Total budget:** 348,480 €.
CurvImpAc - Development of a comprehensive vehicle/track interaction model in curves to reduce the acoustic impact of rail transport

DESCRIPTION The main objective of this project is to address in a comprehensive way the problems associated with the negative impact of railways concerning acoustic pollution and vibrations. Such an impact is especially significant in curves, where phenomena such as squeal and rail corrugation take place, which arise as a consequence of the dynamic interaction between the vehicle and the track. Often, both are closely related to each other and there exist some features of curve squeal that may indicate a link with the development of corrugation. Thus, these problems must be investigated by simultaneously assuming the most realistic hypotheses available to study these complex phenomena.

RESULTS In this project, it is proposed: (1) the development of a broadband dynamic model of vehicle/track interaction in curves, including the detailed profile of the track and the wheel, and a non-linear unsteady rolling contact model; (2) the proposal of convincing mechanisms for squeal and corrugation growth in curves; (3) the development and evaluation of actions aimed at mitigating the problems of squeal and rail corrugation in curves, acting on the wheel design and friction properties.

KEY FIGURES

- **Call:** 2017
- **Duration:** 4 years
- **Type:** Individual Project
- **Area:** Mechanical Engineering
- **Principal Investigator:** F.D. Denia Guzmán
- **Total budget:** 96,000 euros

BENEFICIARY
DIMALIFE. Reliability-based robust optimum design and maintenance of high social and environmental efficiency of bridges and highway infrastructures under restrictive budgets

DESCRIPTION
The main objective of the DIMALIFE project is to develop a methodology that allows taking into account the variability of analytical methods in the decision-making processes during the whole life cycle of bridges and highways infrastructures, including the procurement of projects, new infrastructures as well as current ones, considering social and environmental needs.

RESULTS
After a sensibility analysis of different budgetary policies, the results of this project aim to determine what typologies, specific actions of maintenance and demolition and re-use alternatives are suitable for minimizing environmental and social impacts taking into account the variability. In this respect, an important aspect is to determine which criteria and indicators are key to include, in an effective manner, the sustainability in the procurement procedures of new projects and maintenance of highways.

KEY FIGURES

- **Call:** 2017
- **Duration:** 3 years
- **Type:** Individual Project
- **Area:** Construction Engineering
- **Principal Investigator:** Víctor Yepes & Eugenio Pellicer
- **Total budget:** 41,170,00 €

BENEFICIARY

Universitat Politècnica de València
ICITECH
IntelVía - SmartTrack. Smart track dynamic surveying approaches based on digital image processing

DESCRIPTION

The present project proposes the development of a dynamic surveying and data analysis approach which is able of detecting the position, nature and degradation of different track defects along the layout. For this, accelerations, both vertical and lateral, are recorded on board the trains. This process is aimed to happen in a fully automated way. For this purpose, digital signal processing tools, such as the spectrograms, are used. Such tools decompose the signal and allow its analysis in the time and frequency domain simultaneously. In such representation, track defects show specific patterns, thus allowing for their identification and classification. These patterns may be automatically recognised by means of digital image processing techniques. For this pattern recognition, a training-testing process with the recorded data are carried out.

RESULTS

As a result, the output data of the proposed approach may serve as the input data for today-in-use track deterioration models and track maintenance management tools. In the same way, since a first diagnostic is given on the track conditions, duration of visual inspection and later maintenance tasks may be dramatically reduced, thus lowering the respective costs.

KEY FIGURES

- **Call:** Programa RETOS – Proyectos I+D+i 2017
- **Duration:** 3 years
- **Type:** Individual Project
- **Area:** Rail track inspection
- **Principal Investigator:** Ricardo Insa Franco
- **Total budget:** 114,708.00 €

BENEFICIARY

Universitat Politècnica de València
OBESDINFER. Development of observers on embedded systems for the estimation of the dynamic response of railway vehicles

DESCRIPTION
This project continues the development of a mechatronic system for the online dynamic response of in-service railway vehicles. This system aims to improve the ride safety and comfort, as well as the preventive maintenance of vehicle and track.

RESULTS
Development of an on-board smart system that combines sensor networks, computer simulation and signal processing that provides as outputs track geometry irregularities, wheel-rail contact forces and passenger’s comfort indexes.

KEY FIGURES
Call: 2017
Duration: 3 years
Area: Transport
Principal Investigator: José Luis Escalona Franco and Rosario Chamorro Moreno
Total budget: 141.328,00 €

CONSORTIUM
University of Seville
Plataforma Tecnológica Ferroviaria Española
Spanish Railways Technological Platform
www.ptferroviaria.es

Technical Secretariat
Fundación de los Ferrocarriles Españoles

Ángeles Tauler: angelestauler@ffe.es
Mar Sacristán: msacrsitan@ffe.es
Aida Herranz: aherranz@ffe.es
Eduardo Prieto: eprieto@ffe.es